Problem 85

When nonmetric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was used, where $1 \mathrm{lbm}=0.4539 \mathrm{~kg}$. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?

Solution

Part (a)
Use the formula for percent uncertainty and plug in the numbers.

$$
\begin{aligned}
\text { Percent Uncertainty } & =\frac{\delta A}{A} \times 100 \% \\
& =\frac{0.0001 \mathrm{~kg}}{0.4539 \mathrm{~kg}} \times 100 \% \\
& \approx 0.02 \%
\end{aligned}
$$

Part (b)
Start with the same formula, using the result of part (a) and the given uncertainty of 1 kg . Let the mass in pound-mass be x.

$$
\begin{aligned}
& \text { Percent Uncertainty }=\frac{\delta A}{A} \times 100 \% \\
& \frac{0.0001 \mathrm{~kg}}{0.4539 \mathrm{~kg}} \times 100 \%
\end{aligned}=\frac{1 \mathrm{~kg}}{x \times \frac{0.4539 \mathrm{~kg}}{1 \mathrm{lbm}} \times 100 \%} \begin{aligned}
\frac{0.0001}{0.4539} & =\frac{1 \mathrm{lbm}}{0.4539 x}
\end{aligned}
$$

Solve for x.

$$
x=\frac{1 \mathrm{lbm}}{0.0001}=10,000 \mathrm{lbm}
$$

